Avatar

Bruno Ribeiro

Publicações do autor

Semicírculo sobreposto por retângulo

PROBLEMA Na figura temos um retângulo [tex]ABDC[/tex] e um semicírculo de diâmetro [tex]\overline{FB}[/tex]. Sabendo que o lado [tex]\overline{DC}[/tex] é tangente ao semicírculo e que o comprimento da corda [tex]\overline{BE}[/tex] vale [tex]10[/tex], calcule a área do retângulo. DICA Construa o triângulo [tex]FEB[/tex] e compare os ângulos desse triângulo com os ângulos do triângulo [tex]EAB[/tex]. Reúnam seus …

Continue lendo

Link permanente para este artigo: http://clubes.obmep.org.br/blog/2020/11/semicirculo-sobreposto-por-retangulo/

Um grande sistema

PROBLEMA Considere o seguinte sistema de equações lineares: [tex]\begin{cases} 6x_{1} +x_{2}+x_{3}+x_{4}+x_{5}=10 \\x_{1} +6x_{2}+x_{3}+x_{4}+x_{5}=20 \\x_{1} +x_{2}+6x_{3}+x_{4}+x_{5}=40\\x_{1} +x_{2}+x_{3}+6x_{4}+x_{5}=80 \\x_{1} +x_{2}+x_{3}+x_{4}+6x_{5}=160 \end{cases}[/tex] Calcule o valor de [tex]7x_{1}+3x_{5}[/tex]. DICA Que tal somar todas as equações do sistema e depois comparar essa nova equação com as iniciais? Reúnam seus Clubes e tentem resolver o problema. Se a dica não for …

Continue lendo

Link permanente para este artigo: http://clubes.obmep.org.br/blog/2020/11/um-grande-sistema/

Mais um valor máximo

PROBLEMA Considere todos os pares de números reais [tex]x[/tex] e [tex]y[/tex] que satisfazem a equação [tex]x^{2}+y^{2}=8x+6y-16[/tex]. Determine o valor máximo de [tex]x^{2}+y^{2}[/tex]. DICA Interprete geometricamente a expressão [tex]x^{2}+y^{2}[/tex] e a equação [tex]x^{2}+y^{2}=8x+6y-16[/tex]. Reúnam seus Clubes e tentem resolver o problema. Se a dica não for suficiente, não faz mal: a partir da próxima quinta, 08 …

Continue lendo

Link permanente para este artigo: http://clubes.obmep.org.br/blog/2020/10/mais-um-valor-maximo/