Processing math: 100%

.Problemão: Um problema na rota…

Problema
(Indicado a partir do 9º ano do E. F.)


A figura a seguir representa a bússola do painel de um avião de carga e com ela o piloto determina as suas rotas.

bussola

Diariamente, esse avião decola de uma certa cidade A e alcança a cidade B após duas horas de voo na rota 28.
Certo dia, porém, em um voo noturno, ao decolar, o piloto automático foi acionado; mas, por engano, foi digitada a rota 280, ao invés de 28. Duas horas após a decolagem, o piloto percebeu que não estava na cidade B e só então notou o equívoco.

Supondo que o avião tenha combustível suficiente, qual o ângulo da nova rota que ele deverá seguir para atingir a cidade B?

Extraído do Simulado para o ENEM 2012 da escola Ari de Sá.

 

AJUDA

Pelas discussões percebemos que alguns Clubes tiveram dificuldade no entendimento do enunciado do problema.
Note que, como a duração do voo foi a mesma, consideramos que as cidades B e E têm a mesma distância da cidade A. Assim, fizemos estas figuras para tentar ajudar.
Rota
Observamos que consideraremos as medidas dos ângulos marcadas no sentido horário, de acordo com a leitura da bússola a ser utilizada.

explicador_p

Lembretes

(1) Se duas retas paralelas são intersectadas por uma transversal, então os pares de ângulos alternos internos que essa transversal define são congruentes. (Precisa relembrar esses conceitos? Dê uma passadinha nesta Sala.)
(2) A soma das medidas dos ângulos internos de um triângulo é 180.
(3) Todo triângulo isósceles possui os ângulos da base com a mesma medida.

Solução


Inicialmente, observe que a rota correta corresponde ao ângulo CˆAB cuja medida é 28, mas foi digitada a medida 280, correspondente ao ângulo CˆAE.
A partir da figura base, vamos determinar as medidas de dois ângulos que poderão ajudar na solução do problema.

  • Como a medida de CˆAO é 270, então a medida de OˆAE  é  280270=10.
  • Como a medida de OˆAE  é 10 e a medida de OˆAC  é 90, então a medida de EˆAC  é  9010=80.


Agora, considere o segmento ¯EG tal que ¯EG//¯OA, conforme ilustra a figura a seguir. Daí, GˆEA é um ângulo de 10 e EˆAG mede 80.

Observe a figura a seguir. Como o triângulo BAE é isósceles (¯AB e ¯AE são raios da circunferência, já que consideramos que as cidades B e E têm a mesma distância da cidade A) e a medida do ângulo EˆAB é  80+28=108, então os ângulos AˆBE e BˆEA são côngruos com medida  1801082=36, donde concluímos que a medida do ângulo GˆEB é  3610=26.

Para traçar a nova rota, consideremos o segmento ¯EH perpendicular a ¯EG, uma vez que essa rota vai ser definida a partir do ponto E.

Logo, o ângulo HˆEB da nova rota deve ter medida x=9026=64 .


Solução elaborada pelos Moderadores do Blog.

 

Participaram da discussão do problema os seguintes Clubes: Erudio; Math Error.

Link permanente para este artigo: http://clubes.obmep.org.br/blog/um-problema-na-rota/