.Problema para ajudar na escola: Um triângulo transformado

Problema
(A partir do 9º ano do E. F. – Nível de dificuldade: Médio)


De cada uma das três pontas de um triângulo equilátero de lados medindo [tex]8\, cm[/tex], foram recortados três pequenos triângulos equiláteros de mesmo tamanho, de modo que a soma dos perímetros dos três triângulos pequenos fosse igual ao perímetro do hexágono resultante (que aparece colorido na figura).
Qual o comprimento, em centímetros, de cada lado dos triângulos pequenos que foram recortados?

A figura não é proporcional aos dados do problema.

Solução


O comprimento dos lados do triângulo equilátero original era [tex]8\, cm\, [/tex]. Assim, se [tex]l[/tex] for o comprimento dos lados dos triângulos menores, então os lados maiores do hexágono colorido na figura de referência abaixo terão comprimento [tex]\boxed{8-2l}[/tex] cada.

Como a soma dos perímetros dos três triângulos pequenos é igual ao perímetro do hexágono, segue que:
[tex]\qquad 3\times(l+l+l)=3l+3\times(8-2l)[/tex]
[tex]\qquad 9l=3l+24-6l[/tex]
[tex]\qquad 12l=24[/tex]
[tex]\qquad \boxed{l=\dfrac{24}{12}=2}\, .[/tex]
Dessa forma, o comprimento de cada lado dos triângulos pequenos que foram recortados é [tex]\, \fcolorbox{black}{#E6E6FA}{$2\, cm$}\, .[/tex]


Solução elaborada pelos Moderadores do Blog.

Gincana de 2017 – Clubes de Matemática da OBMEP
Nível B – Questão Média

Se for conveniente, você pode obter um arquivo desta página em PDF. Mas, para abrir esse arquivo, é necessário que você tenha o Adobe Acrobat Reader instalado no dispositivo que você está utilizando. Caso não tenha, é só clicar AQUI para fazer o download.
Se o seu dispositivo já tem o Adobe Acrobat Reader instalado, basta copiar o arquivo abaixo e abri-lo sempre que quiser!

Link permanente para este artigo: http://clubes.obmep.org.br/blog/problema-para-ajudar-na-escola-um-triangulo-transformado/