(A) Problema de Gincana: Uma equação e três raízes

Clique no botão abaixo para visualizar o problema.

Problema


A equação [tex]\boxed{x^3+3x^2-2020x+1=0}[/tex] admite as raízes [tex]x_1, \, x_2[/tex] e [tex] x_3 .[/tex]

Qual o valor de [tex]\boxed{\sqrt[3]{x_1}+\sqrt[3]{x_2}+\sqrt[3]{x_3}}?[/tex]

explicador_p

AJUDA

As Relações de Girard para uma equação cúbica da forma [tex]\boxed{x^3+kx^2+ lx+m=0}[/tex] garantem que, se considerarmos que [tex]x_1[/tex], [tex]x_2[/tex] e [tex]x_3[/tex] são as raízes dessa equação, então:
[tex]\qquad \qquad x_1+x_2+x_3=-k .[/tex]

Solução


Inicialmente, observe a seguinte sequência de igualdades equivalentes:
[tex]\qquad x^3+3x^2-2020x+1=0 \iff x^3+3x^2+3x+1=2023x \iff\\
\qquad (x+1)^3=2023x \iff \sqrt[3]{x}=\dfrac{x+1}{\sqrt[3]{2023}}.\\
[/tex]
Dessa forma, como

  • [tex]\boxed{x^3+3x^2-2020x+1=0 \iff \sqrt[3]{x}=\dfrac{x+1}{\sqrt[3]{2023}}}[/tex] e
  • [tex]x_1, \, x_2[/tex] e [tex] x_3 [/tex] são raízes da equação [tex]\boxed{x^3+3x^2-2020x+1=0}[/tex],

segue que:
[tex]\quad\begin{align*} \sqrt[3]{x_1}+\sqrt[3]{x_2}+\sqrt[3]{x_3}&=\dfrac{x_1+1}{\sqrt[3]{2023}}+\dfrac{x_2+1}{\sqrt[3]{2023}}+\dfrac{x_3+1}{\sqrt[3]{2023}}\\
&=\dfrac{\left(x_1+x_2+x_3\right)+3}{\sqrt[3]{2023}}\\
&=\dfrac{-3+3}{\sqrt[3]{2023}}=0. \end{align*}\\
[/tex]
Portanto, [tex]\fcolorbox{black}{#FFEEEF}{$\sqrt[3]{x_1}+\sqrt[3]{x_2}+\sqrt[3]{x_3}=0$}\,.[/tex]


Solução elaborada pelos Moderadores do Blog.

Primeira Gincana de 2023 – Clubes de Matemática da OBMEP
Nível B – Questão Difícil

Link permanente para este artigo: http://clubes.obmep.org.br/blog/a-problema-de-gincana-uma-equacao-e-tres-raizes/