Início

.Problema para ajudar na escola: Área de um losango

Problema

(A partir da 3ª série do E. M.- Nível de dificuldade: Médio)

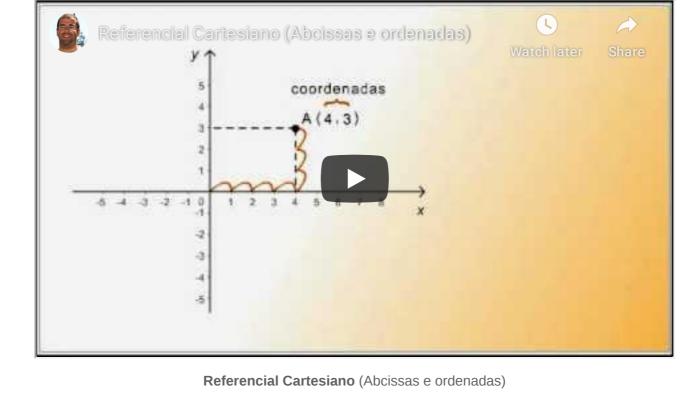
Determinar a área do losango *ABCD* sabendo que as coordenadas dos vértices **A**, **B** e **C** em um mesmo plano cartesiano xOy são dadas por:

• A=(10,3); B=(5,3) e C=(2,-1).

Para resolver este problema vamos utilizar noções

AJUDA

básicas de plano cartesiano. Talvez o vídeo abaixo possa ajudar!



Lembretes e notações

Em um plano cartesiano xOy, considere os pontos $A=(x_A,y_A)\;$ e $\;B=(x_B,y_B)\;$.

(1) A distância entre os pontos $A \, e \, B$, denotada por d_{AB} , é definida por:

$$d_{AB}=\sqrt{\left(x_A-x_B
ight)^2+\left(y_A-y_B
ight)^2}$$
 .
(2) O ponto médio dos pontos $A\,$ e $\,B$, denotado por M_{AB} , é o ponto d

(2) O ponto médio dos pontos
$$A \ {\rm e} \ B$$
, denotado por M_{AB} , é o ponto definido por:

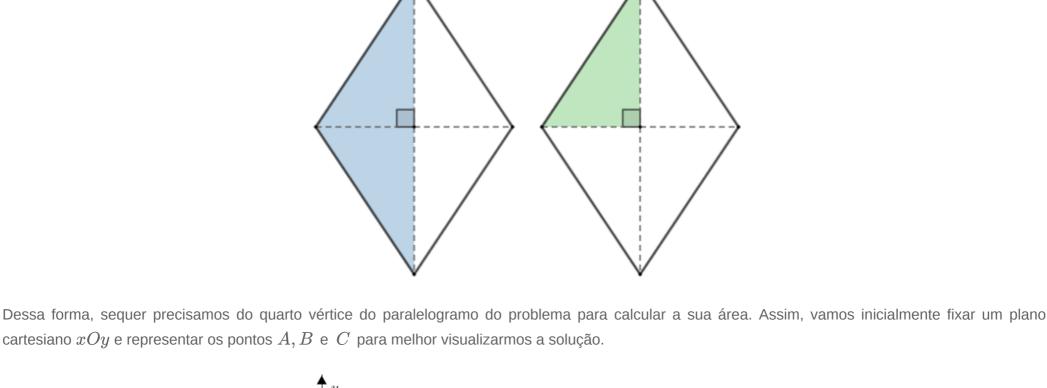
$$M_{AB}=\left(\frac{x_A+x_B}{2}\ , \ \frac{y_A+y_B}{2}\right).$$
 (3) Um losango possui os quatro lados congruentes.

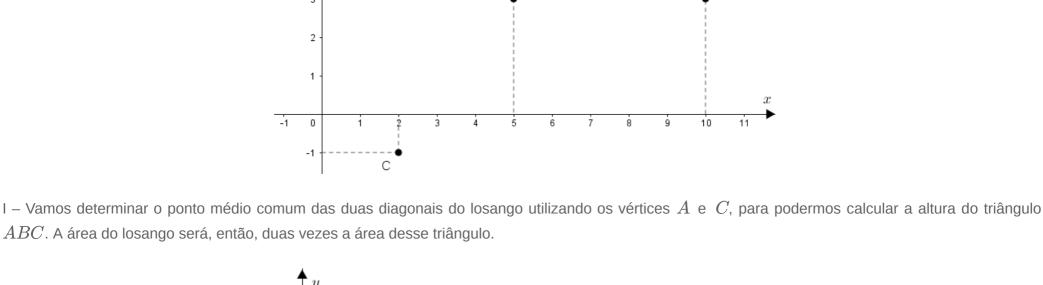
lacktriangledown Denotaremos o segmento de reta definido por dois pontos, digamos X e Y, por \overline{XY} e seu respectivo comprimento por XY.

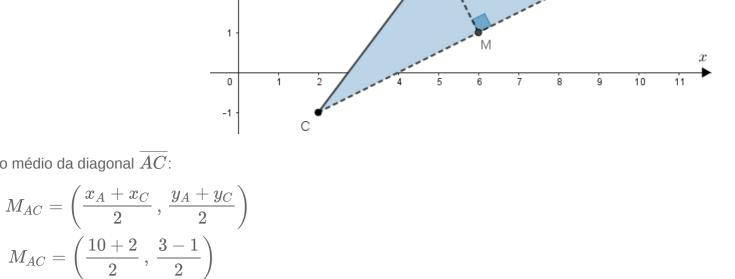
(4) Em todo losango, as diagonais intersectam-se perpendicularmente nos respectivos pontos médios.

Solução

A partir dos Lembretes (3) e (4), podemos decompor um losango em quatro triângulos retângulos congruentes ou em dois triângulos, não necessariamente retângulos, congruentes, conforme ilustram as duas imagens a seguir.







 $d_{AC}=\sqrt{\left(x_A-x_C
ight)^2+\left(y_A-y_C
ight)^2}$ $d_{AC} = \sqrt{\left(10-2
ight)^2 + \left(3-(-1)
ight)^2}$

Vamos agora determinar os comprimentos dos segmentos $\overline{AC}\,$ e $\,\overline{BM}\,$, respectivamente, base e altura do triângulo $ABC\,$.

 $d_{AC} = \sqrt{8^2 + 4^2} = \sqrt{64 + 16}$ $d_{AC} = \sqrt{80}$.

ullet Comprimento do segmento \overline{BM} :

ullet Ponto médio da diagonal AC:

 $M_{AC} = (6, 1).$

ullet Comprimento do segmento AC :

$$d_{BM} = \sqrt{\left(x_B - x_M
ight)^2 + \left(y_B - y_M
ight)^2}$$
 $d_{BM} = \sqrt{\left(5 - 6
ight)^2 + \left(3 - 1
ight)^2}$ $d_{BM} = \sqrt{(-1)^2 + 2^2} = \sqrt{1 + 4}$ $d_{BM} = \sqrt{5}$.

$$S_{ABC}=10.$$

 $S_{ABC}=rac{\sqrt{400}}{2}$

 $S_{ABC} = rac{base imes altura}{2}$

 $S_{ABC} = rac{\sqrt{80} imes \sqrt{5}}{2}$

Portanto, a área do losango ABCD é 2 imes 10 = 20 unidades de área.

II — Vamos utilizar o ponto médio comum das duas diagonais do losango já calculado, $M_{AC}=(6\,,\,1)$, para calcularmos a medida do cateto \overline{MA} do

triângulo retângulo BMA . A medida de \overline{MB} já está calculada: $d_{BM}=\sqrt{5}$. A área do losango será, dessa vez, quatro vezes a área desse triângulo.

 $d_{MA}=\sqrt{\left(x_{M}-x_{A}
ight)^{2}+\left(y_{M}-y_{A}
ight)^{2}}$ $d_{MA} = \sqrt{(6-10)^2 + (1-3)^2}$

 $d_{MA}=\sqrt{20}$.

• Área do triângulo BMA:

ullet Comprimento do segmento MA :

$$d_{MA}=\sqrt{20}$$
 . do triângulo BMA : $S_{BMA}=rac{base imes altura}{2}$

$$S_{BMA}=rac{\sqrt{20}^{-} imes\sqrt{5}}{2}$$

 $d_{MA} = \sqrt{(-4)^2 + (-2)^2} = \sqrt{16 + 4}$

$$S_{BMA}=rac{\sqrt{100}}{2}$$
 $S_{BMA}=5.$ Portanto, a área do losango $ABCD$ é $4 imes5=20$ unidades de área.

Solução elaborada pelos Moderadores do Blog.

Somando novos talentos para o Brasil

