

Clubes de Matemática da OBMEP

Disseminando o estudo da matemática

Início Sobre os Clubes

Competições

Fórum restrito

Biblioteca dos Clubes

Ludoteca dos Clubes

Mural de Avisos

Salas de Atividades

Salas de Estudo

Salas de Problemas

Salas para Leitura

Videoteca dos Clubes

Dúvidas?

* Equipe *

.Problema para ajudar na escola: Último dígito

Problema

(A partir do 9º ano do E. F.- Nível de dificuldade: Médio)

Determine o algarismo das unidades da soma $3^{2020} + 4^{2020}$

Adaptado do 6º Campeonato de Matemática de la Universidad de La Frontera, 2013.

Ajuda

Algoritmo de Euclides ou Divisão Euclidiana

Sejam a e b números naturais, com $b \neq 0$.

$$a b$$
 $r q$

Ao dividirmos a por b encontraremos um quociente q e um resto r, naturais e únicos, tais que:

$$(1) \quad 0 \le r < b$$

(1)
$$0 \le r < b$$
 (2) $a = b \cdot q + r$.

Solução

Vamos analisar separadamente os algarismos das unidades das potências $3^{2020}\,$ e $\,4^{2020}\,$.

Observe que:

- $3^1=3$; assim, o algarismo das unidades de 3^1 é 3.
- $3^2 = 9$; assim, o algarismo das unidades de 3^2 é 9.
- $3^3 = 27$; assim, o algarismo das unidades de 3^3 é 7.
- $3^4 = 81$; assim, o algarismo das unidades de 3^4 é 1. • $3^5 = 243$; assim, o algarismo das unidades de 3^5 é 3.
- ullet $3^6=729$; assim, o algarismo das unidades de 3^6 é 9.

Note que os algarismos das unidades das potências de 3 são "3, 9, 7 ou 1" e se repetem ciclicamente, nessa ordem, de quatro em quatro. Assim, conseguimos estabelecer o seguinte padrão:

algarismo das unidades	expoente	forma geral do expoente
3	$n = 1, 1 + 4 = 5, 5 + 4 = 9, \cdots$	$n=4k+1,k\in\mathbb{N}$
9	$n=2, 2+4=6, 6+4=10, \cdots$	$n=4k+2,k\in\mathbb{N}$
7	$n = 3, 3 + 4 = 7, 7 + 4 = 11, \cdots$	$n=4k+3,k\in\mathbb{N}$
1	$n = 4, 4 + 4 = 8, 8 + 4 = 12, \cdots$	$n=4k,k\in\mathbb{N}^*$

Agora, com relação às potências de 4, observe que:

- $4^1 = 4$; assim, o algarismo das unidades de 4^1 é 4.
- $4^2 = 16$; assim, o algarismo das unidades de 4^2 é 6.
- ullet $4^3=64$; assim, o algarismo das unidades de 4^3 é 4.
- $extbf{0}$ $4^4 = 256$; assim, o algarismo das unidades de 4^4 é 6.

Note que os algarismos das unidades das potências de 4 são "4 ou 6" e se repetem ciclicamente de dois em dois; com isso, conseguimos estabelecer o seguinte padrão:

algarismo das unidades	expoente	forma geral do expoente
4	$n = 1, 1 + 2 = 3, 3 + 2 = 5, \cdots$	$n ext{ impar}$
6	$n=2, 2+2=4, 4+2=6, \cdots$	$n \operatorname{par}$

 $2020 \mid 4$ 0 505

A divisão de 2020 por 4, nos indica que 2020 é múltiplo de 4, ou seja, da forma $2020=4\cdot505$. Assim, o algarismo das unidades da potência 3^{2020} é 1.

Por outro lado, 2020 é um número par; logo, o algarismo das unidades da potência 4^{2020} é 6.

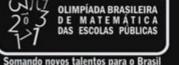
Dessa forma, podemos esquematizar a soma $3^{2020} + 4^{2020}$ da seguinte forma:

$$\begin{array}{c} \cdots 1 \\ + \cdots 6 \\ \hline \end{array}$$

e, portanto, o algarismo das unidades da soma $3^{2020}+4^{2020}$ é 7

Solução elaborada pelos Moderadores do Blog.

Feito com 🎔 por Temas Graphene.



Realização

