
Problema

(A partir do 8° ano do E. F.- Nível de dificuldade: Difícil)

Na figura abaixo, ABCD é um quadrado e ABEFG é um pentágono regular.

Qual a medida do ângulo determinado pelos segmentos GB e GD?

Adaptado da XIV ONM, 2014.

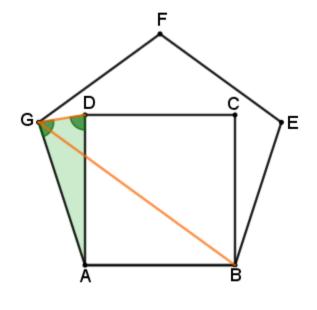
Lembretes e notações

- (1) A soma das medidas dos ângulos internos de qualquer triângulo é 180° .
- (2) Cada ângulo interno de um pentágono regular mede 108° .
- (3) Cada ângulo interno de um quadrado mede 90° .
- (4) Todo triângulo isósceles possui os ângulos da base com a mesma medida.
- $m{arphi}$ Denotaremos o ângulo de vértice V e definido por dois pontos, digamos X e Y, por $X\hat{V}Y$ e a sua medida por $m(X\hat{V}Y)$.
- Denotaremos o segmento de reta definido por dois pontos, digamos X e Y, por \overline{XY} e seu respectivo comprimento por XY.

Solução

ullet Vamos analisar o triângulo AGD.

Observe que o segmento \overline{AB} é lado do quadrado e do pentágono; logo, os dois polígonos têm lados com o mesmo comprimento. Dessa forma, os segmentos \overline{AG} e \overline{AD} têm o mesmo comprimento e, portanto, o triângulo AGD é isósceles.


Vamos determinar, inicialmente, a medida do ângulo $G\hat{A}D$, utilizando os **Lembretes (2) e (3)**:

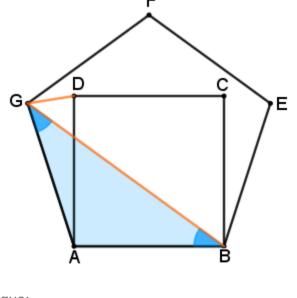
$$m(G\hat{A}D) = m(G\hat{A}B) - m(D\hat{A}B)$$

$$m(G\hat{A}D)=108^{\circ}-90^{\circ}$$

$$m(G\hat{A}D)=18^{\circ}$$
 ,

já que $G\hat{A}B$ e $D\hat{A}B$ são ângulos internos do pentágono e do quadrado, respectivamente.

Com isso, utilizando os Lembretes (1) e (4), segue que:


$$m(D\hat{G}A) + m(G\hat{D}A) + m(G\hat{A}D) = 180^\circ$$

$$2\,m(D\hat{G}A)+m(G\hat{A}D)=180^\circ$$

$$egin{aligned} 2\,m(D\hat{G}A) + 18^\circ &= 180^\circ \ 2\,m(D\hat{G}A) &= 162^\circ \end{aligned}$$

$$m(D\hat{G}A)=81^{\circ}$$
 .

ullet Agora, vamos analisar o triângulo ABG para obter a medida do ângulo \hat{AGB} . Como os dois polígonos têm lados com o mesmo comprimento, AG=AB e, portanto, ABG é um triângulo isósceles.

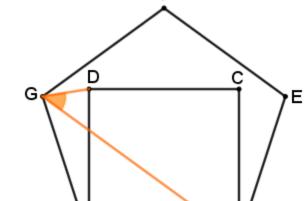
Então, utilizando os Lembretes (1), (2) e (4), segue que: $m(A\hat{G}B) + m(A\hat{B}G) + m(B\hat{A}G) = 180^\circ$

$$m(AGB) + m(ABG) + m(BAG) = 180$$

 $2 m(A\hat{G}B) + m(B\hat{A}G) = 180^{\circ}$

$$2\,m(A\hat{G}B)+108^\circ=180^\circ$$

$$2 m(A\hat{G}B) = 72^{\circ}$$


$$m(A\hat{G}B)=36^{\circ}$$
 .

 $m(D\hat{G}B) = m(D\hat{G}A) - m(A\hat{G}B)$

Pronto, já temos condições de determinar a medida do ângulo \hat{BGD} :

$$m(DGB) = m(DGA) - m(AGB)$$

 $m(D\hat{G}B) = 81^{\circ} - 36^{\circ}$

$$m(D\hat{G}B) = 45^{\circ}$$

Portanto, a medida do ângulo determinado pelos segmentos **GB** e **GD** é 45°

Solução elaborada pelos Moderadores do Blog.

Feito com ♥ por Temas Graphene.

