

Clubes de Matemática da OBMEP

Disseminando o estudo da matemática

Início

Sobre os Clubes

Competições

Fórum restrito

Biblioteca dos Clubes

Ludoteca dos Clubes Mural de Avisos Salas de Atividades

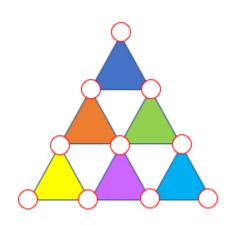
Salas de Estudo

Salas de Problemas Salas para Leitura **Videoteca dos Clubes**

Dúvidas?

* Equipe *

.Problema para ajudar na escola: Vértices de triângulos


Problema

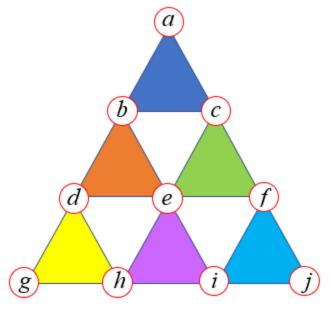
(A partir do 9º ano do E. F.- Nível de dificuldade: Difícil)

Seis triângulos foram desenhados e coloridos conforme mostra a figura abaixo.

Distribua os números 0, 1, 2, 3, 4, 5, 6, 7, 8 e 9 nos círculos que foram colocados sobre os vértices dos triângulos, de modo que as somas dos números colocados nos três vértices de cada triângulo colorido sejam iguais.

De quantas maneiras é possível fazer essa distribuição?

Observação: Para fazer a distribuição, considere os triângulos fixos e, portanto, não faça rotações ou simetrias.


Extraído da OBM Sênior, 1994.

Solução

Sejam a, b, c, d, e, f, g, h, i, j os números colocados nos vértices, conforme ilustra a próxima figura.

Como a,b,c,d,e,f,g,h,i e j são números distintos que valem $0,1,\cdots,8,9$, temos que:

$$a+b+c+d+e+f+g+h+i+j=0+1+\cdots+8+9=45$$
.

Sabemos que as somas dos números colocados nos três vértices de cada um dos seis triângulos coloridos são iguais; assim, temos também:

$$a+b+c=S$$

$$b+d+e=S$$

$$c + e + f = S$$

$$d + g + h = S$$
$$e + h + i = S$$

f + i + j = S.

Observe que na primeira, na quarta e na sexta igualdades não aparece o número e; assim, somando essas três igualdades segue que:

$$(a+b+c) + (d+g+h) + (f+i+j) = 3S$$

 $a+b+c+d+f+a+h+i+j = 3S$

$$a + b + c + d + f + g + h + i + j = 3S$$

$$45 - e = 3S$$

$$e = 45 - 3S$$
$$e = 3 \cdot (15 - S)$$

$$e = 3 \cdot (15 - S)$$
. (i)

Como 15 - S é um número inteiro, a igualdade (i) nos mostra que e é um múltiplo de 3. Assim, temos apenas quatro opções para o número e: 0, 3, 6 ou 9.

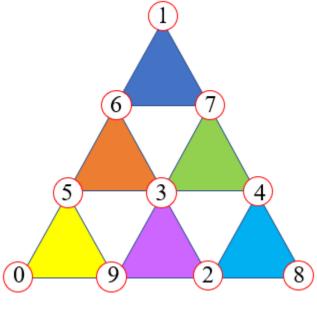
Mas por outro lado, o número e aparece em vértices de três triângulos; assim, devem existir números naturais b,d,c,f,h,i tais que

$$b+d=S-e$$

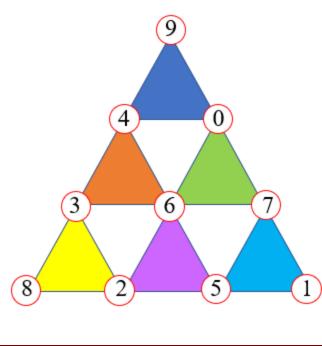
$$c + f = S - e$$

$$c+f=S-e$$
 ; $h+i=S-e$.

Vamos, então, testar os quatro valores possíveis de e, observando que a diferença S-e deverá ser escrita de três maneiras diferentes, a partir dos algarismos 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.


• Se e=0, de (i) concluímos que S=15 e, portanto, S-e=15. Mas perceba que 15 só pode ser escrito como 6+9 e 7+8; logo, e não pode ser 0.

ullet Se e=3, de $oldsymbol{(i)}$ concluímos que S=14 e, portanto, S-e=11. Perceba que 2+9=11, 4+7=11 e 5+6=11; logo, e pode ser 3.


- Se e=6, de (i) concluímos que S=13 e, portanto, S-e=7. Perceba que 0+7=7, 2+5=7 e 3+4=7; logo, e pode ser 6.
- ullet Se e=9, de (i) concluímos que S=12 e, portanto, S-e=3. Mas perceba que 3 só pode ser escrito como 0+3 e 1+2; logo, e não pode ser 9.

Temos, então, duas soluções para o problema, a menos de rotações ou simetrias:

ullet Para e=3, uma das configurações é mostrada a seguir.

• Para e=6, mostramos, a seguir, uma das configurações possíveis.

Solução elaborada pelos **Moderadores do Blog**.

Feito com **v** por **Temas Graphene**.

