

Clubes de Matemática da OBMEP

Disseminando o estudo da matemática

Sobre os Clubes

Fórum restrito

Biblioteca dos Clubes

Ludoteca dos Clubes

Videoteca dos Clubes

Competições

Mural de Avisos

Salas de Atividades

Início

Salas de Estudo

Salas de Problemas

Salas para Leitura

Dúvidas?

* Equipe *

.Problema para ajudar na escola: Soma de três inversos

(A partir do 1º ano do E. M.)

(ONEM, 2011) Sejam a, b e c números reais, distintos dois a dois, tais que

$$a=\sqrt[3]{1-4b-4c}$$
 ,

$$a = \sqrt{1 - 4c - 4a}$$
 , $b = \sqrt[3]{1 - 4c - 4a}$.

$$c = \sqrt[3]{1 - 4a - 4b}$$
.

Determinar o valor da soma $\frac{1}{a} + \frac{1}{b} + \frac{1}{c}$.

AJUDA

🔪 As **Relações de Girard** para uma equação cúbica da forma $x^3 + kx^2 + lx + m = 0$ garantem que, se considerarmos que x_1 , x_2 e x_3 são as raízes dessa equação, então:

(i)
$$x_1 + x_2 + x_3 = -k$$
;

$$(ii) x_1 \cdot x_2 + x_1 \cdot x_3 + x_2 \cdot x_3 = l$$
;

$$\textit{(iiii)}\ x_1 \cdot x_2 \cdot x_3 = -m\ .$$

igwedge Se A e B são números reais, então:

$$A^3 - B^3 = (A - B) (A^2 + AB + B^2)$$
 .

Solução

Das duas primeiras igualdades dadas no problema segue que:

$$a^3 = 1 - 4b - 4c$$
 e $b^3 = 1 - 4c - 4a$,

$$a^3 - b^3 = (1 - 4b - 4c) - (1 - 4c - 4a)$$

$$a^3 - b^3 = 1 - 4b - 4c - 1 + 4c + 4a$$

$$a^3 - b^3 = 4(a - b).$$

Utilizando a segunda AJUDA, prosseguimos um pouco mais:

$$(a-b)(a^2+ab+b^2)=4(a-b).$$

$$(a-b)(a^2+ab+b^2)-4(a-b)=0.$$

$$(a-b)(a^2+ab+b^2-4)=0.$$
 (i)

Como por hipótese a, b e c são números reais distintos dois a dois, particularmente, $a-b \neq 0$. Logo, segue de (i) que:

$$a^2 + ab + b^2 - 4 = 0$$
. (ii)

Vamos repetir os mesmos passos partindo, agora, da segunda e da terceira equações dadas no problema. Iniciando, temos que:

$$b^3 = 1 - 4c - 4a$$

$$b^3 = 1 - 4c - 4a$$
 e $c^3 = 1 - 4a - 4b$,

donde

$$b^3 - c^3 = (1 - 4c - 4a) - (1 - 4a - 4b)$$

$$b^3 - c^3 = 1 - 4c - 4a - 1 + 4a + 4b$$

$$b^3 - c^3 = 4(b - c).$$

Utilizando a segunda AJUDA, prosseguimos um pouco mais:

$$(b-c)\left(b^2+bc+c^2\right)=4\left(b-c\right).$$

$$(b-c)\left(b^2+bc+c^2
ight)-4\left(b-c
ight)=0$$
 .

$$(b-c)(b^2+bc+c^2-4)=0$$
. (iii)

Como b e c são números reais distintos, b-c
eq 0. Logo, segue de $\emph{(iii)}$ que:

$$b^2 + bc + c^2 - 4 = 0$$
. (i

Agora, fazendo a diferença entre as igualdades
$$(ii)$$
 e (iv) , obtemos que: $a^2+ab+b^2-4-(b^2+bc+c^2-4)=0$

$$a^{2} + ab + b^{2} - 4 - b^{2} - bc - c^{2} + 4 = 0$$

 $a^{2} + ab - bc - c^{2} = 0$

$$a^2 + ab - bc - c^2 + (ac - ac) = 0$$

$$a^2 + ab + ac - ac - bc - c^2 = 0$$

$$a(a+b+c) - c(a+b+c) = 0$$

$$(a-c)(a+b+c) = 0.$$
 (v)

Como a e c são números reais distintos, $a-c \neq 0$, donde concluímos de (v) que a+b+c=0

Utilizando a relação a+b+c=0 nas igualdades $a^3=1-4b-4c$, $b^3=1-4c-4a$ e $c^3=1-4a-4b$ obtemos que:

$$a^3 = 1 - 4(b+c)$$

$$a^3 = 1 + 4a$$

$$a^{3} = 1 + 4a$$
 $a^{3} - 4a - 1 = 0$

$$a^3 = 1 - 4(b + c)$$
 $b^3 = 1 - 4(c + a)$ $c^3 = 1 - 4(a + b)$ $a^3 = 1 + 4a$ $b^3 = 1 + 4b$ $c^3 = 1 + 4c$ $b^3 - 4b - 1 = 0$ $c^3 - 4c - 1 = 0$

$$c^3 = 1 + 4c$$

$$c^{3} = 1 + 4c$$
 $c^{3} - 4c - 1 =$

As últimas igualdades de cada um dos três casos nos mostram que os números reais $a,\ b$ e c são raízes duas a duas distintas da equação $X^3 - 4X - 1 = 0.$

Assim, pelas *Relações de Girard* para equações cúbicas, temos que:

$$ab + ac + bc = -4$$
 e $abc = 1$,

$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{bc + ac + ab}{abc} = \frac{ab + ac + bc}{abc} = \frac{-4}{1},$$

ou seja,
$$\displaystyle rac{1}{a} + rac{1}{b} + rac{1}{c} = -4$$