

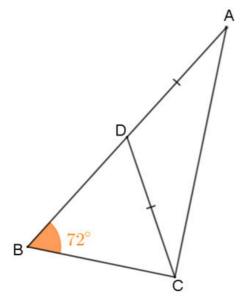
Clubes de Matemática da OBMEP

Disseminando o estudo da matemática

Clubes de Matemática da OBMEP

.Problema para ajudar na escola: Vários ângulos

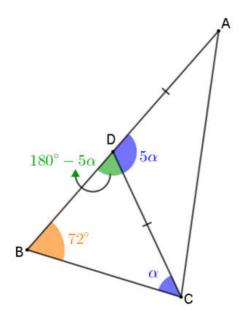
0


Problema

(A partir do 9º ano do E. F.)

(**UK Junior Mathematical Olympiad 2012** – Adaptado) No triângulo ABC da figura:

- ullet D é um ponto do segmento AB tal que os segmentos AD e DC têm o mesmo comprimento;
- ullet a medida do ângulo \hat{ABC} é 72° ;
- ullet a medida do ângulo \hat{ADC} é cinco vezes a medida de \hat{DCB} .

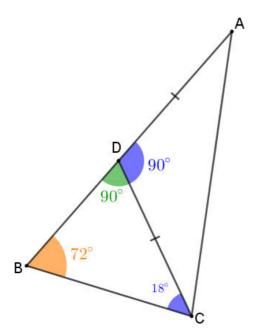

Qual a medida do ângulo \hat{ACD} ?

Observação: Figura não proporcional aos dados do problema.

Solução

Seja α a medida em graus do ângulo \hat{DCB} . Assim, a medida em graus do ângulo \hat{ADC} é 5α e, consequentemente, a medida de \hat{CDB} é $180^\circ - 5\alpha$, já que \hat{ADC} e \hat{CDB} são ângulos suplementares.

Como a soma das medidas dos ângulos internos de um triângulo é 180° , observando o triângulo BDC segue que


$$(180^{\circ} - 5\alpha) + \alpha + 72^{\circ} = 180^{\circ}$$

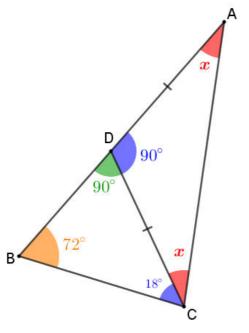
$$180^{\circ} - 5\alpha + \alpha + 72^{\circ} = 180^{\circ}$$

$$4\alpha = 72^{\circ}$$

$$\alpha = 18^{\circ}$$
.

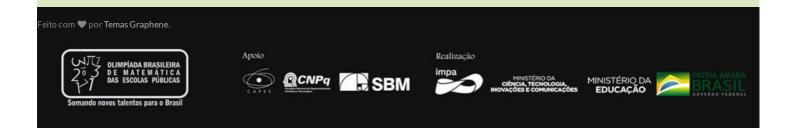
A partir da medida lpha, obtemos que a medida do ângulo \hat{ADC} é $5 imes 18^\circ = 90^\circ.$

Finalmente, já podemos calcular a medida do ângulo \hat{ACD} .


Note que \hat{ACD} é um dos ângulos da base de um triângulo isósceles; assim, se sua medida em graus for denotada por x, então a medida do ângulo \hat{DAC} também será x. Com isso, utilizando mais uma vez que "a soma das medidas dos ângulos internos de um triângulo é 180° " segue que:

$$x + 90^{\circ} + x = 180^{\circ}$$

$$2x + 90^\circ = 180^\circ$$


$$2x = 90^{\circ}$$

$$x=45^{\circ}$$
.

Pelo exposto, a medida do ângulo \hat{ACD} é $\boxed{45^{\circ}}$.

Solução elaborada pelos **Moderadores do Blog.**

