

.Problema para ajudar na escola: Uma área colorida de um círculo

Problema

(A partir do 9º ano do E. F.)

(**XVIII OPM**, 1999 – Adaptado) A área do círculo da figura abaixo mede $40 cm^2$. Se as medidas dos ângulos $A\hat{O}B$ e $C\hat{O}D$ são respectivamente 60° e 30° , determine a medida da área colorida do círculo.

Solução 1

Podemos resolver este problema estabelecendo proporções entre "a área total do círculo" (o todo) e "cada região colorida" (as partes). O parâmetro que utilizaremos é a medida dos ângulos que definem as três regiões. As partes são definidas por ângulos de 30° e 60°, de acordo com os dados do problema, e o todo é definido por um ângulo de 360°, uma volta completa.

Com base nessa proporção, determinaremos as medidas das respectivas áreas das duas regiões coloridas do círculo resolvendo duas regrinhas de três simples.

Área verde: A_v

 $40 cm^2 - 360^{\circ}$ $A_y - 30^{\circ}$

Área lilás: A₁

$$\begin{array}{cccc}
40 \, cm^2 & ---- & 360 \\
A_l & ---- & 60^{\circ}
\end{array}$$

₽

Dessa forma, obtemos que $A_v \times 360^\circ = 40 \times 30^\circ$,	Dessa forma, obtemos que $A_I \times 360^\circ = 40 \times 60^\circ$,
donde:	donde:
$A_{\nu} = \frac{40 \times 30}{360} = \frac{10}{3} cm^2.$	$A_{l} = \frac{40 \times 60}{360} = \frac{40}{6} = \frac{20}{3} cm^{2}.$
Portanto, a medida da área S da região colorida do círculo pode ser assim calculada:	
$S = A_v + A_l = \frac{10}{3} + \frac{20}{3} = \frac{30}{3} = 10 \text{ cm}^2.$	
Solução elaborada pelos Moderadores do Blog .	

Solução 2

Podemos rotacionar as duas regiões coloridas em torno do centro *O* do círculo, sem sobrepô-las, de modo a obter uma região que corresponde a um quarto do círculo, já que teríamos um setor circular de 90°. Assim, a medida da área *S* da região colorida é dada por:

$$S = \frac{40}{4} = 10 \ cm^2$$

Um applet para ajudar

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Você pode rotacionar as duas regiões coloridas para obter uma região que corresponde a um quarto do círculo utilizando o applet abaixo.

Instruções:

(1) Espere o aplicativo carregar completamente.

(2) Para fazer a rotação da região colorida de verde, clique no ponto C, mantenha o mouse pressionado e faça o movimento.

(3) Para fazer a rotação da região colorida de lilás, clique no ponto A,mantenha o mouse pressionado e faça o movimento.

(4) Para retornar à posição inicial, clique no centro das setinhas circulares que aparecem no canto superior direito do aplicativo.

Clique AQUI para abrir o applet.

OBMEP_ srdg, criado com o GeoGebra

Solução elaborada pelos Moderadores do Blog.

