

Clubes de Matemática da OBMEP

Disseminando o estudo da matemática

Clubes de Matemática da OBMEP

.Problema para ajudar na escola: Uma sequência numérica

€

Problema

(A partir do 8º ano do E. F.)

 $(\mathbf{ONEM} - 2008)$ Foram escritos em uma folha de papel, em ordem crescente, os primeiros três mil números inteiros positivos que são múltiplos de 2 ou de 3, mas não múltiplos de ambos.

Nessa sequência, que número ocupa a posição 2018?

Ajuda

Algoritmo de Euclides ou Algoritmo da Divisão

Sejam a e b números naturais, com $b \neq 0$.

$$\begin{bmatrix} a & b \\ r & q \end{bmatrix}$$

Ao dividirmos a por b encontraremos um quociente q e um resto r, naturais e únicos, tais que:

$$(1) \quad 0 \le r < b \quad (2) \ a = q \, b + r.$$

Solução

Vamos fazer algumas considerações, antes de resolvermos o problema propriamente dito.

Sem muito formalismo, ao dividirmos um número natural n por seis podemos encontrar resto 0, 1, 2, 3, 4 ou 5.

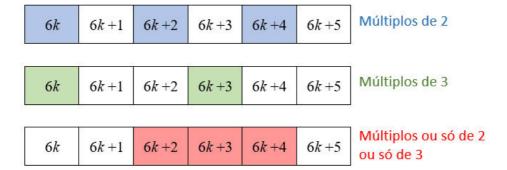
- ullet Se n deixa resto 0, então n é múltiplo de 2 e de 3 simultaneamente.
- ullet Se n deixa resto 1, então n não é múltiplo de 2 e nem 3.
- ullet Se n deixa resto 2, então n é múltiplo de 2, mas não é múltiplo de 3.
- ullet Se n deixa resto 3, então n é múltiplo de 3, mas não é múltiplo de 2.
- ullet Se n deixa resto 4, então n é múltiplo de 2, mas não é múltiplo de 3.
- ${\color{red} \bullet}$ Se n deixa resto 5, então n não é múltiplo de 2 e nem 3.

Resto 0	Resto 1	Resto 2	Resto 3	Resto 4	Resto 5	Múltiplos de 2
Resto 0	Resto 1	Resto 2	Resto 3	Resto 4	Resto 5	Múltiplos de 3
Resto 0	Resto 1	Resto 2	Resto 3	Resto 4	Resto 5	Múltiplos ou só de 2 ou só de 3

Se você já consegue entender um pouco o formalismo da Matemática, veja que podemos escrever as informações acima da seguinte maneira:

Um número natural n ao ser dividido por seis deixa resto $0,\ 1,\ 2,\ 3,\ 4$ ou 5. Assim, n pode assumir uma dessas formas: $\boxed{6k} \qquad \boxed{6k+1} \qquad \boxed{6k+2} \qquad \boxed{6k+3} \qquad \boxed{6k+4} \qquad \boxed{6k+5}, \text{ com } k \in \mathbb{N}.$

- Se n deixa resto 0, então n=6k=2(3k)=3(2k). Logo, é múltiplo de 2 e de 3 simultaneamente, já que tanto 3k como 2k são números naturais.
- Se n deixa resto 1, então n=6k+1. Perceba que n não pode ser escrito na forma n=2t e nem na forma n=3t, com t sendo um número natural; assim, n não é múltiplo de 2 e nem 3.
- Se n deixa resto 2, então n=6k+2=2(3k+1) e, portanto, é múltiplo de 2. Mas note que não podemos escrever n na forma n=3t com t sendo um número natural; assim, embora seja múltiplo de 2, n não é múltiplo de 3.
- Se n deixa resto 3, então n=6k+3=3(2k+1) e, assim, é múltiplo de 3. Mas veja que não é possível escrever n na forma n=2t com t sendo um número natural. Portanto n não é múltiplo de 2, embora seja múltiplo de 3.
- Se n deixa resto 4, então n=6k+4=2(3k+2) e, dessa forma, n é múltiplo de 2. Mas também não podemos escrever n na forma n=3t com t sendo um número natural, o que mostra que, embora seja múltiplo de 2, n não é múltiplo de 3.
- Se n deixa resto 5, então n=6k+5. Veja que n não pode ser escrito na forma n=2t e nem na forma n=3t, com t sendo um número natural; assim, n não é múltiplo de 2 e nem 3.



De uma maneira ou de outra, a informação que nos ajudará a resolver o problema é esta:

- Na sequência aparecem números que, quando divididos por seis, deixam resto $2,\,3$ ou 4. Isso significa que foram escritos números da forma 6k+2, 6k+3 ou 6k+4, com k um número natural. Percebam que:
 - para k=0, aparecem os números $2,\,3,\,4$;
 - ullet para k=1, aparecem os números $8,\,9,\,10$;
 - para k=2, aparecem os números 14, 15, 16;
 - e assim sucessivamente.

Dessa forma, foram escritos consecutivamente, de 3 em 3, números naturais da forma 6k+2, 6k+3 ou 6k+4. Assim, devemos agrupar as 2018 posições de três em três para determinarmos se o número que ocupará a posição 2018 será o primeiro, o segundo ou o terceiro no seu respectivo grupo. Observe que

portanto, devemos formar 672 grupos de três números e o número que ocupará a posição 2018 será o segundo número do grupo sequinte.

Fazendo $k=0,\,1,\,2,\,\cdots$, 671 conseguimos definir os 672 grupos cujas três posições são ocupadas, respectivamente, pelos números 6k+2, 6k+3 e 6k+4. Como os números do grupo seguinte serão definidos por k=672, o número que ocupará a posição 2018 será da forma 6k+3, para k=672. Esse número será $6\times672+3=4035$.

O esquema abaixo poderá ajudar na visualização da distribuição dos números.

Grupo 1	2	3	4	k = 0
	Posição 1	Posição 2	Posição 3	
Grupo 2	8	9	10	k = 1
	Posição 4	Posição 5	Posição 6	
Grupo 3	14	15	16	k=2
	Posição 7	Posição 8	Posição 9	
		÷		
Grupo k+1	6k+2	6k+3	6k+4	$oxed{k}$
	Posição $3k+1$	Posição $3k+2$	Posição $3k+3$	
		:		
Grupo 672	4028	4029	4030	k = 671
	Posição 2014	Posição 2015	Posição 2016	
Grupo 673	4034	4035	4036	k = 672
	Posição 2017	Posição 2018	Posição 2019	

Solução elaborada pelos Moderadores do Blog.

