

Clubes de Matemática da OBMEP

Disseminando o estudo da matemática

Clubes de Matemática da OBMEP

.Problema para ajudar na escola: Uma função de Euler

0

Problema

(A partir da 1ª série do E. M.)

Leonhard Euler (1707-1783) foi um brilhante matemático suíço que deixou inúmeras contribuições não só para a Matemática, mas também para a Física, para a Química e para a Astronomia.

Entre seus inúmeros feitos, Euler definiu uma importante função, comumente denotada pela letra grega φ (phi), bastante utilizada em Teoria dos Números, em particular na Criptografia.

Essa função, hoje conhecida como **função** φ **de Euler**, associa a cada inteiro positivo n a quantidade de **inteiros positivos menores do que** n **que são coprimos com** n.

Considere a função

$$\varphi: \{1, 2, 3, 4, 5, \cdots\} \to \{1, 2, 3, 4, 5, \cdots\}$$
 $n \mapsto \varphi(n)$

em que $\varphi(n)$ é a quantidade de inteiros positivos menores do que n que são coprimos com n.

- (a) Determine $\varphi(20)$.
- **(b)** Determine $\varphi(23)$.
- (c) Se p é um número natural primo, determine $\varphi(p)$.

Lembrete

Se m e n são números naturais tais mdc(n,m)=1, então m e n são ditos coprimos, ou relativamente primos ou, ainda, primos entre si.

Solução

(a) Poderíamos calcular o mdc entre 20 e todos os números naturais menores do que 20 e contarmos aqueles para os quais o mdc é igual 1. Mas podemos economizar tempo e contas, observando que:

- ightharpoonup Como 20 é um número par, então todo número natural par a é tal que $mdc(a,20) \neq 1$; já que, nesse caso, $mdc(a,20) \geqslant 2$.
- ightharpoonup Como 20 é um múltiplo de 5, então todo número natural b múltiplo de 5 é tal que $mdc(b,20) \neq 1$; já que, nesse caso, $mdc(b,20) \geqslant 5$.

Dessa forma, não precisamos calcular o mdc entre 20 e os números naturais menores do que 20 que são pares ou múltiplos de 5. Vamos então aos cálculos, lembrando que a decomposição de 20 como produto de potências de números primos é $20=2^2\cdot 5$.

 $mdc(20, \mathbf{1}) = 1$; $mdc(20, \mathbf{3}) = 1$; $mdc(20, \mathbf{7}) = 1$; $mdc(20, \mathbf{9}) = 1$; $mdc(20, \mathbf{11}) = 1$; $mdc(20, \mathbf{13}) = 1$; $mdc(20, \mathbf{17}) = 1$; $mdc(20, \mathbf{19}) = 1$.

Pelos nossos cálculos, concluímos que $\overline{arphi(20)=8}$

- (b) Neste item também poderíamos calcular o mdc entre 23 e todos os números naturais menores do que ele. Mas observe que 23 é um número primo; assim, se x é um número natural menor do que 23, todos os fatores primos de x são menores do que 23 e, com isso, mdc(23,x)=1. Assim, todo número natural menor do que 23 é coprimo com 23; portanto, concluímos que $\boxed{\varphi(23)=22}$.
- (c) Este item é uma generalização do item anterior, por isso vamos utilizar o mesmo raciocínio!

Sejam p um número natural primo e m um número natural menor do que p. Note que qualquer divisor d de m é tal que $d\leqslant m$, donde d< p. Como p e 1 são os únicos divisores de p, então p e m têm apenas um divisor comum: 1.

Dessa forma, qualquer número natural não nulo m menor do que p é tal que mdc(p,m)=1 e, portanto, os coprimos com p menores do que ele são:

$$\underbrace{1,2,3,\ldots,p-1}_{p-1}$$

Com isso, concluímos que se p é um número natural primo, então $\overline{arphi(p)=p-1}$

Assim, em particular, $\varphi(11)=10$, $\varphi(13)=12$, $\varphi(19)=18$, $\varphi(2719)=2718$, $\varphi(8893)=8892$ e $\varphi(p)=p-1$, para todos os 1229 números **desta lista**.

Solução elaborada pelos Moderadores do Blog.

Um vídeo

A função φ de Euler é também conhecida como função totiente de Euler e pode ser denotada igualmente pela letra grega phi maiúscula: Φ .

Assista a um vídeo da *Khan Academy* sobre essa função e aprenda um pouco mais sobre ela: é só clicar na setinha e

Bons Estudos!

Clique AQUI para abrir o vídeo.

Apoio

Realização

