

Clubes de Matemática da OBMEP

Disseminando o estudo da matemática

Clubes de Matemática da OBMEP

.Problema: Reservatório de chope

Problema

(**Geometria Espacial**, Coleção F. de M. Elementar – Adaptado) O reservatório de chope de um bar tem a forma de um cilindro circular reto de $5\,dm$ de altura e cujo raio da base mede $6\,dm$ de diâmetro.

A cervejaria que abastece esse bar distribui o chope que produz em barris padronizados e com capacidade para 18 litros

Quantos desses barris são necessários para encher o reservatório do bar?

Lembrete

O volume de um cilindro de diâmetro 2R e altura h é dado por:

 $V_C = \pi \times R^2 \times h$ unidades de volume.

Solução

De acordo com o **Lembrete**, o volume do reservatório do bar é dado por:

$$V = \pi \times 3^2 \times 5 = 45\pi \text{ dm}^3.$$

Como $1\,\mathrm{dm}^3$ equivale a $1\,\mathrm{litro}$, então, o volume do reservatório é $45\pi\,\mathrm{litros}$.

Dessa forma, para encher o reservatório do bar, seriam necessários $\frac{45\pi}{18}\cong 7,85\,$ barris de $18\,litros.$

Portanto, devem ser comprados 8 barris de chope para que o reservatório do bar seja enchido completamente.

Solução elaborada pelos Moderadores do Blog.

Feito com 🎔 por Temas Graphene.

