

Clubes de Matemática da OBMEP

Disseminando o estudo da matemática

Clubes de Matemática da OBMEP

 \equiv

.Problema: Distribuição de livros

Problema

(SANTOS, J.P; MELLO, M.P; MURARI, I.T.C. Introdução à Análise Combinatória- Adaptado) De quantas maneiras podemos distribuir 98 livros iguais entre 4 escolas? Pode ocorrer o caso de alguma das escolas não receber livro algum.

Lembrete:

Uma das maneiras de agruparmos elementos de um dado conjunto é escolhê-los levando-se em consideração apenas a sua natureza, sem se importar em que ordem eles foram escolhidos ou apresentados. Esse tipo de agrupamento de elementos é denominado uma **Combinação simples**. Especificamente, quando escolhemos r dentre n elementos de um conjunto dessa forma, dizemos que estamos definindo uma Combinação simples de n elementos tomados r a r. E o legal é que, dado um conjunto finito, podemos determinar quantos agrupamentos desse tipo

podemos fazer, sem que precisemos exibi-los.

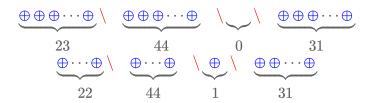
ullet O número de Combinações simples de n elementos, tomados r a r, é denotado por $C_{n,r}$ ou C_n^r e assim definido:

$$C_{n,r}=C_n^r=rac{n!}{(n-r)!r!}, {
m com}\ n,r\in \mathbb{N}\ {
m e}\ r\leqslant n.$$

Solução

Para solucionar o problema usaremos uma técnica de contagem que aparece na maioria dos livros didáticos como *Combinação Completa*.

Sejam x_1, x_2, x_3, x_4 as quantidades de livros que as escolas E_1, E_2, E_3 e E_4 receberão, respectivamente. Temos, então, que:


• $x_1+x_2+x_3+x_4=98$, com $x_1,x_2,x_3,x_4\geq 0$, ou seja, inteiros não negativos.

Observe dois exemplos de distribuição dos $98\ \text{livros}$:

- ullet 23 livros para escola E_1 ;
- ullet 44 livros para escola E_2 ;
- ullet 0 livros para escola E_3 ;
- ullet 31 livros para escola E_4 .
- ullet 22 livros para escola E_1 ;
- ullet 44 livros para escola E_2 ;
- ullet 1 livros para escola E_3 ;
- ullet 31 livros para escola E_4 .

Essas soluções, assim como as demais, podem ser representadas por sequências ordenadas: (23, 44, 0, 31) e (22, 44, 1, 31).

Podemos também representar as soluções da equação $x_1+x_2+x_3+x_4=98$ utilizando 98 sinais \oplus , que representarão os livros a serem distribuídos, e 3 sinais \setminus , que separarão os lotes de livros que cada escola receberá. Particularmente, as soluções (23,44,0,31) e (22,44,1,31) seriam representadas como:

Para distribuir os livros entre as escolas, formaremos uma fila com os 98 símbolos \oplus e usaremos os 3 sinais \setminus para separar os lotes. A pergunta cuja resposta resolve o nosso problema é:

• De quantas maneiras podemos distribuir os $3 \setminus \text{entre os } 98 \oplus ?$

Podemos pensar que temos 98+3=101 posições e destas vamos escolher 3 para colocar os símbolos \setminus ou, se preferir, das 98+3=101 posições, vamos escolher 98 para colocar os símbolos \oplus .

A primeira situação equivale a escolher 3 dentre 101 objetos e a segunda equivale a escolher 98 dentre 101 objetos.

Podemos fazer qualquer uma das duas contagens utilizando combinações simples: C^3_{101} ou C^{98}_{101} , já que uma propriedade da Análise Combinatória nos assegura que $C^3_{101}=C^{98}_{101}$.

De qualquer forma, o número de maneiras possíveis de distribuir 98 livros entre as 4 escolas pode ser assim calculado:

$$\frac{101!}{98! \ 3!} = \frac{101 \times 100 \times 99 \times 98!}{98! \ 3!} = \frac{101 \times 100 \times 99}{6} = \boxed{166 \ 650}.$$

Solução elaborada pelos Moderadores do Blog.

Para aprender mais...

Análise Combinatória – Combinação Completa

Vídeo extraído do Portal da Matemática

Professor Josimar Silva

