Categoria: Geometria

Cerca de tela metálica

PROBLEMA Um agricultor deseja delimitar um pomar retangular. Nos fundos do terreno há um muro e, para os outros três lados do pomar, ele tem disponível [tex]100\;m[/tex] de tela metálica. Quais devem ser as dimensões da cerca para que o pomar tenha área máxima? DICA Represente por [tex]x[/tex] a medida em metros de cada um …

Continue lendo

Link permanente para este artigo: http://clubes.obmep.org.br/blog/2021/02/cerca-de-tela-metalica/

Outro valor máximo

PROBLEMA Considere todos os pares de números reais [tex]x[/tex] e [tex]y[/tex] para os quais [tex]x^{2}+y^{2}=1[/tex]. Neste conjunto, encontre o maior valor assumido pela expressão [tex]E = x + 2y.[/tex] DICA Considere que [tex]E=x + 2y [/tex] é a equação de uma reta [tex]r[/tex]. Quais são os pontos de interseção de [tex]r[/tex] com os eixos? Quando …

Continue lendo

Link permanente para este artigo: http://clubes.obmep.org.br/blog/2020/12/outro-valor-maximo/

Duas Moedas

PROBLEMA Temos duas moedas perfeitamente iguais, por exemplo, de 1 real. Fazemos rodar uma delas em torno da outra, mantendo sempre o contato, mas sem derrapar. Quando a moeda que está a rodar volta à posição inicial, quantas voltas ela deu sobre si própria? DICA Lembre que o comprimento de uma circunferência de raio R …

Continue lendo

Link permanente para este artigo: http://clubes.obmep.org.br/blog/2020/11/duas-moedas/

Ângulo no quadrilátero

PROBLEMA No quadrilátero [tex]ABCD[/tex], [tex]D\hat A C=98 ^\circ[/tex], [tex]D\hat B C=82 ^\circ[/tex], [tex]B\hat C D=70 ^\circ[/tex] e [tex]BC=AD[/tex]. Encontre a medida do ângulo [tex]A\hat C D[/tex]. DICA Prolongue o segmento [tex]\overline{CA}[/tex] e calcule o suplemento do ângulo [tex]D\hat A C[/tex] Reúnam seus Clubes e tentem resolver o problema. Se a dica não for suficiente, não …

Continue lendo

Link permanente para este artigo: http://clubes.obmep.org.br/blog/2020/11/angulo-no-quadrilatero/

Semicírculo sobreposto por retângulo

PROBLEMA Na figura temos um retângulo [tex]ABDC[/tex] e um semicírculo de diâmetro [tex]\overline{FB}[/tex]. Sabendo que o lado [tex]\overline{DC}[/tex] é tangente ao semicírculo e que o comprimento da corda [tex]\overline{BE}[/tex] vale [tex]10[/tex], calcule a área do retângulo. DICA Construa o triângulo [tex]FEB[/tex] e compare os ângulos desse triângulo com os ângulos do triângulo [tex]EAB[/tex]. Reúnam seus …

Continue lendo

Link permanente para este artigo: http://clubes.obmep.org.br/blog/2020/11/semicirculo-sobreposto-por-retangulo/